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Abstract 
We choose two types of strongly coupled systems described by an effective theory in low energy or long wavelength. In one system, we study the near equilibrium thermal systems macroscopically 
described by fluid states and and another the macroscopic phase transition in superconductors which is driven by some strongly coupled meachanism. We compute and  study the HEE in these systems.   
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UV regulated HEE
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at critical vel.   
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separation length  
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Mutual  Information (MI)

  has same behaviourd = 3,4

Staionary fluid flow                      Fluctuating fluid

In the excited fluid states the fluid configurations 
are propagating sound waves or a propagating 
pressure pulse constructed by superposing the 
linearized sound wave solution

We computed the HEE for this fluid 
configurations in  where the fluid is non-
dissiative and the higher dimensional dissipative 
fluids in  and 
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Change of HEE as pressure 
pulse moves through subsystem
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In presence of  
a sound mode

d = 3

, In , an additional UV divergence appears, sub-leading to ‘area law’. 

It is damped so vanishes in the equilibrium state. Regulating the additional UV divergent 
part the behaviour in  is similar to .

ΔSE ∼ e−λtb
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 has a phase between real and  
Imaginary pieces and vanishes at late 
Time.
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HEE in holographic superconductors

1 2

For  dimensional holographic superconductor in the boundary theory we consider an 
 Einstein-Maxwell-scalar system in  AdS bulk. The superconducting phase  is characterized  
by the condensation of a charged operator  below the critical   on the field theory side;  
this corresponds to an instability of the black hole against the charged scalar field perturbation 
 at  .

d
d + 1

𝒪 Tc

Tc

We compute the HEE in these systems for strip and circular disk like subsystem in  bulk.3 + 1
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At high temp. , there is no charged condensate. The bulk solution is AdS Reissner- 
Nordstrom BH

> Tc

Strip like subsystem

Circular disk like subsystem
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ΔSE ∼ (1 − T/Tc)

It matches with the mean free field theory result in  D3 + 1
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